IT商业网-解读信息时代的商业变革
当前位置: 首页 > 金融 > 正文

大数据助推金融发展,河君宝构建金融风控新体系

2019-06-16 20:42:43 来源:   

  随着科技的发展,人类已经进入了大数据时代,在大数据时代,一切的行为都将被数据化,在金融领域也如此。而大数据对金融风控本质上来说是有好处的,可以为人们提供安全可靠的金融服务。比如河君宝就充分依托大数据技术,为个人和企业机构打造了完美的风控体系。

  建立多元化大数据生态系统

  河君宝通过大数据应用和分析,将借款人消费行为、金融活动和财务状况进行分析匹配,帮助金融机构实现对借款人量身定制的个性化金融产品和技术、目前,河君宝建立的金融大数据生态系统高度多元化,数据模型运用超过5000个变量及衍生变量,成功地规避了单一数据导致的样本偏颇。该生态系统的数据获取渠道有:通过河君宝自身采集的借款人数据及交易数据、通过与银行合作的模式取得的央行征信数据等;通过大量的数学分析与模型应用,达到精准风控与产品配置;通过高频迭代,快速、及时响应市场及人群的变化。

   构建精准化、低成本获客能力

  河君宝基于自身丰富的金融经验,充分利用网络行为大数据技术、机器学习技术,形成覆盖用户与金融服务的多维标签体系,运用客户分层理论进行定位,实现更低成本的、更具针对性的精准营销。

  通过数据挖掘与大数据分析等技术手段,河君宝对用户特征、交易行为及服务需求进行全面采集与刻画,提取关键标签并形成体系,并以此建立基于借款人分层的营销管理系统,实现借款人信息的自动化与智能化管理。

   打造大数据、智能化反欺诈技术

  河君宝对不同类型的欺诈风险定制了相应的防范措施,主要包括:接入人脸识别工具,确保实际操作人与身份证银行卡绝对匹配;接入共享黑名单,构筑共防共治的诚信体系,减低运营风险等。而各类反欺诈技术配合机器学习模型的使用,能够不断提高反欺诈系统智能水平和精准度,更有效地实现复杂环境下的反欺诈。

  基于机器学习技术的风控模型

  此外,河君宝建立了基于机器学习算法的一系列智能风控模型,主要包括:信贷历史模型、社会信用模型、行为风险模型、金融资产模型、社交风险模型、设备风险模型、行业地域模型等。总体会量化评估借款人的信用状况,以此来决策是否推荐给金融机构以及相匹配的风险定价。

  总体来说,金融科技正在不断创新,而未来的金融风险控制也将任重而道远,河君宝将继续扎根金融领域,不断优化自身产品、业务和技术,力求为大家带来更好的服务。

免责声明: IT商业新闻网遵守行业规则,本站所转载的稿件都标注作者和来源。 IT商业新闻网原创文章,请转载时务必注明文章作者和来源“IT商业新闻网”, 不尊重本站原创的行为将受到IT商业新闻网的追责,转载稿件或作者投稿可能会经编辑修改或者补充, 如有异议可投诉至:post@itxinwen.com
微信公众号:您想你获取IT商业新闻网最新原创内容, 请在微信公众号中搜索“IT商业网”或者搜索微信号:itxinwen,或用扫描左侧微信二维码。 即可添加关注。
标签:

品牌、内容合作请点这里: 寻求合作 ››

相关阅读RELEVANT